Stable ergodicity for smooth compact Lie group extensions of hyperbolic basic sets
نویسنده
چکیده
We obtain sharp results for the genericity and stability of transitivity, ergodicity and mixing for compact connected Lie group extensions over a hyperbolic basic set of a C2 diffeomorphism. In contrast to previous work, our results hold for general hyperbolic basic sets and are valid in the C -topology for all r > 0 (here r need not be an integer and C1 is replaced by Lipschitz). Moreover, when r ≥ 2, we show that there is a C2-open and C -dense subset of C -extensions that are ergodic. We obtain similar results on stable transitivity for (non-compact) R-extensions, thereby generalizing a result of Niţică and Pollicott, and on stable mixing for suspension flows.
منابع مشابه
Stable Transitivity of Certain Noncompact Extensions of Hyperbolic Systems
Let f : X → X be the restriction to a hyperbolic basic set of a smooth diffeomorphism. We find several criteria for transitivity of noncompact connected Lie group extensions. As a consequence, we find transitive extensions for any finitedimensional connected Lie group extension. If, in addition, the group is perfect and has an open set of elements that generate a compact subgroup, we find open ...
متن کاملA Note about Stable Transitivity of Noncompact Extensions of Hyperbolic Systems
Let f : X → X be the restriction to a hyperbolic basic set of a smooth diffeomorphism. If G is the special Euclidean group SE(2) we show that in the set of C2 G-extensions of f there exists an open and dense subset of stably transitive transformations. If G = K × Rn, where K is a compact connected Lie group, we show that an open and dense set of C2 G-extensions satisfying a certain separation c...
متن کاملLectures on Lyapunov Exponents and Smooth Ergodic Theory
1. Lyapunov Exponents for Differential Equations 2. Abstract Theory of Lyapunov Exponents 3. Regularity of Lyapunov Exponents Associated with Differential Equations 4. Lyapunov Stability Theory 5. The Oseledets Decomposition 6. Dynamical Systems with Nonzero Lyapunov Exponents. Multiplicative Ergodic Theorem 7. Nonuniform Hyperbolicity. Regular Sets 8. Examples of Nonuniformly Hyperbolic System...
متن کاملStable transitivity of Euclidean group extensions
The topological transitivity of non-compact group extensions of topologically mixing subshifts of finite type has been studied recently by Niţică. We build on these methods, and give the first examples of stably transitive non-compact group extensions of hyperbolic dynamical systems. Our examples include extensions of hyperbolic basic sets by the Euclidean group SE(n) for n even, n ≥ 4.
متن کاملLectures on Symmetric Attractors
3. Lecture III: Stable ergodicity of skew extensions Let f be a diieomorphism of the compact Riemannian manifold M. We say f is partially hyperbolic 9] if there is a continuous Tf-invariant splitting such that Tf expands E u , contracts E s and sup kT s p fk < inf m(T c p f); sup kT c p fk < inf m(T u p f): (Here m(A) = kA ?1 k ?1 .) If the center bundle E c is tangent to a C 1-foliation F of M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003